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ABSTRACT Based on the recent high-resolution labora-
tory experiments on propagating shear rupture, the consti-
tutive law that governs shear rupture processes is discussed in
view of the physical principles and constraints, and a specific
constitutive law is proposed for shear rupture. It is demon-
strated that nonuniform distributions of the constitutive law
parameters on the fault are necessary for creating the nucle-
ation process, which consists of two phases: (i) a stable,
quasistatic phase, and (if) the subsequent accelerating phase.
Physical models of the breakdown zone and the nucleation
zone are presented for shear rupture in the brittle regime. The
constitutive law for shear rupture explicitly includes a scaling
parameter D. that enables one to give a common interpreta-
tion to both small scale rupture in the laboratory and large
scale rupture as earthquake source in the Earth. Both the
breakdown zone size X, and the nucleation zone size L are
prescribed and scaled by D, which in turn is prescribed by a
characteristic length A, representing geometrical irregulari-
ties of the fault. The models presented here make it possible
to understand the earthquake generation process from nu-
cleation to unstable, dynamic rupture propagation in terms of
physics. Since the nucleation process itself is an immediate
earthquake precursor, deep understanding of the nucleation
process in terms of physics is crucial for the short-term (or
immediate) earthquake prediction.

The mechanical instability that gives rise to a dynamically prop-
agating shear rupture is caused by frictional slip failure on a
preexisting fault or shear fracture of intact materials. As will be
discussed later, frictional slip instability and shear fracture insta-
bility of intact rock are the two extreme cases of shear rupture.
Therefore, if there is a constitutive law that governs the shear
rupture, both frictional slip failure and shear fracture of intact
materials should be treated unifyingly and quantitatively in terms
of the single constitutive law. The shear rupture can proceed
stably and quasistatically at a slow speed even in the brittle regime
or, alternatively, propagate unstably and dynamically at a fast
speed close to sonic velocities. These two extreme phases are part
of the rupture process, so that both phases should also be treated
unifyingly and quantitatively by the single constitutive law. These
must be kept in mind when we discuss what type and form are the
most appropriate and physically reasonable for the constitutive
law of earthquake shear rupture.

The stability or instability of the rupture process once the
rupture has occurred is governed by how progressively the
local strength in the breakdown zone behind the rupture front
degrades with ongoing local slip displacement. The transient
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response of the shear traction to the local slip displacement in
the breakdown zone is a key to the quantitative analysis of the
stability or instability of the rupture. The breakdown zone is
defined as the zone behind the tip of a propagating rupture
over which the shear strength degrades with ongoing slip to a
residual friction stress level. Careful and well prepared, high-
resolution laboratory experiments (1-3) have made it possible
to reveal the transient response of the shear stress to the local
slip displacement in the breakdown zone, and a specific form
of the constitutive law for shear rupture can be determined
from these experimental observations so as to meet the
physical principles and constraints established.

We first wish to discuss what type and form are the most
appropriate and physically reasonable as the constitutive law for
shear rupture and to present a specific constitutive law for shear
rupture and a model of the breakdown zone based on a series of
our high-resolution laboratory experiments on local breakdown
near the propagating front during shear rupture along a fault of
weak junction in a large rock sample (1-3). We then present a
model of earthquake rupture nucleation, which is also based on
intrinsic properties of the local breakdown during shear rupture
nucleation revealed in the recent high-resolution laboratory
experiments. The shear rupture nucleation is defined here as the
transition process (or zone) where shear rupture grows with a
slow speed from the point where the shear rupture nucleus is
formed to the critical point beyond which the rupture front
propagates at a speed close to sonic velocities. Data obtained
from the high-resolution laboratory experiments enable one to
discuss how unstable, dynamic shear rupture is nucleated in the
brittle regime and its mechanical conditions in terms of the
constitutive law for shear rupture in the framework of fracture
mechanics. The breakdown zone and the nucleation zone will be
modeled physically in terms of the constitutive law parame-
ters, and it will be shown how well and physically reasonably
the breakdown zone and the nucleation zone are scaled in
terms of one of the constitutive law parameters, which in turn
strongly depends on a characteristic length representing
geometrical irregularities of the rupturing fault. Finally, we
discuss the earthquake nucleation and immediate precursors
associated with the nucleation.

Constitutive Law for Shear Rupture

Basic Principles. The surface of a solid, even when best-
prepared, is made up of asperities. When two surfaces of solid
materials are pressed in contact, they do not touch over the entire
area A, (apparent area of contact), but they get in contact only
at a number of asperities. The sum of the areas of all the asperity
contacts constitutes the real area of contact A(<4,). The atomic
interaction between the surfaces takes place at these really
contacting portions (atom-to-atom contact); however, the pow-
erful interatomic forces are of very short range, of the order of a
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few Angstroms. Solid surfaces in general form adsorbed films,
such as molecules of water vapor and/or oxygen. The thickness
of these films may be of the order of a few molecularly thick layers
(4). The presence of adsorbed films between the mating solid
surfaces interrupts the surface’s atom-to-atom interaction at the
contacting portions. This is the reason why frictional strength is
in general much lower than fracture strength.

However, adhesion or cohesion occurs at the contact areas
where the adsorbed films have been broken up during the
normal load application or during sliding. In this case, the
shearing strength of these adhesive (or cohesive) junctions is
the prime cause of frictional resistance (5). For rocks contain-
ing typical, hard silicate minerals such as quartz, feldspar, and
pyroxene, the penetration of hard asperities into the films on
the opposing surface easily occurs during the normal load
application or during sliding, and the asperities at the con-
tacting portions fail by brittle fracture, rather than by plastic
shear (6). In this case, frictional strength is primarily due to
brittle fracture of these asperities.

Let the sum of the solid—solid contact (film-broken) areas be
denoted by 4, which is a fraction of the sum of the whole
junction areas 4,, and the rest of the junction (solid—film-solid
contact) areas by 4, = A, — A;. When two surfaces are pressed
together by a normal load N, the total frictional force F is

N N
F = M1A1</T> + MzAz(/T), [1]

where w; and u; are the frictional coefficients for the solid—-solid
contact and solid-film-solid contact portions, respectively (7).
Average frictional coefficient u between the surfaces is given by

F A, A,
pENT Rl +Mzz- [2]

The frictional coefficient u; represents the shearing strength
of the solid material and p, represents the shearing strength of
the adsorbed or intervening films. It has been found that w; is
much greater than unity, but w; is less than unity; for instance,
it has been estimated for Solenhofen limestone that w; = 4-18,
and p, = 0.3 (7).

We have from Eq. 2 that u = p, if 47 = 0, and that w = py if
A, = 0. When 4; = 0, u has a minimum value, so that frictional
strength is very low in this case. In contrast, at a higher normal
load, larger deformation of the asperities that are in contact
causes more asperities to get in contact, which results in larger A,
and A4;. At a sufficiently high normal load at elevated tempera-
ture, the entire area A, of fault surface may get into real, cohesive
contact (41 = A; = A,), and in this case the shear frictional
resistance comes equal to (but never exceeds) the shear strength
of intact rock. In other words, the shear strength of intact rock can
be regarded as the upper limit of frictional strength. This shows
that frictional slip instability on a preexisting fault (of a case
where A; = 0) and shear fracture instability of intact rock are the
two extreme cases of shear rupture, and therefore both instabil-
ities should be treated unifyingly and quantitatively in terms of a
single constitutive law for shear rupture. Indeed, there is consid-
erable circumferential evidence that earthquake rupture insta-
bility that occurs in the Earth’s crust is a mixed process between
what is called frictional slip and fresh fracture of initially intact
rock.

The two extreme phases, that is, (i) stable, quasistatic
rupture growth, and (if) unstable, dynamic fast-speed rupture
propagation, should also be treated unifyingly and quantita-
tively by the single constitutive law, because both phases are
part of the rupture process. It has been demonstrated that
unstable, dynamic rupture processes are neither time nor rate
dependent (8) and that strong motion source parameters such
as slip acceleration for dynamically propagating shear rupture
are well explained by a slip-dependent constitutive law in
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quantitative terms (3), as will be discussed later. These show
that the time or rate effect is of secondary significance to the
constitutive law for shear rupture and that the constitutive law
for shear rupture should primarily be slip dependent.

Shear rupture is essentially an inhomogeneous and nonlin-
ear process where local concentration of deformation in a
potential thin zone of imminent rupture results in the bond
separation in the zone during slip, forming the macroscopic
rupture surfaces and releasing the accumulated stress (and
strain energy). In other words, shear rupture is the process
where the shear strength eventually degrades to a residual
stress level with ongoing slip displacement on the rupturing
surfaces (Fig. 14), and the zone behind the rupture front over
which the shear strength degrades to the residual stress level
is referred to as the breakdown zone (cf. Fig. 1B). The
slip-weakening property in the breakdown zone is intrinsic to
shear rupture of any type, any phase, and any size scale. That
is to say, even if shear rupture occurs along the preexisting
fault of weak zone with a finite thickness, which may be made
up of gouge particles, or even if shear fracture is of intact
material, essentially common is the slip-weakening property in
the breakdown zone. This property is also common, despite
vast differences in the size scale. Thus, if there is a constitutive
law applicable for shear rupture of any type, any phase, and any
size scale, the law should primarily be slip dependent.
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F1G.1. (A) A constitutive relation for shear rupture. (B) A physical
model of the breakdown zone near the propagating tip of shear rupture
in the brittle regime, derived from the constitutive relation shown in
A. 7 is the initial shear stress on the verge of slip, 7, is the peak shear
stress, 7 is the residual friction stress, D, is the slip displacement at
which the peak stress is attained, D is the critical slip displacement,
and X, is the breakdown zone size.
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The shear rupture process is greatly affected by geometrical
irregularities of the rupturing surfaces, and hence it is size-scale
dependent. Accordingly, the constitutive law for shear rupture
should include a scaling parameter explicitly. Fault surfaces in
general have fractal roughnesses; however, they exhibit self-
similarity only over finite bandwidths (9, 10), and a different
fractal dimension can be calculated for each band bounded by
upper and lower corner wavelengths (9). If this is the case, the
corner wavelength A, separating the neighboring two bands
is a characteristic length representing geometrical irregular-
ities of the fault. The corner wavelength in the 10- to 107%-m
band is particularly important because the breakdown pro-
cess that occurs near the tip of propagating rupture is
virtually governed by such a characteristic length scale. We
will find later that A. plays a key role in scaling the rupture
size.

In view of all the above facts, and given that the parameters
prescribing the constitutive law depend on ambient conditions
and the slip velocity (or slip rate), the law may be expressed as
follows (11):

T=f(D; D, o, T, A, CE). [3]
In this expression, the shear traction 7 on the fault surfaces is a
function of the slip displacement D, the slip velocity D on the
fault, the effective normal stress g (defined by oSt = o, — P,
where o, is the normal stress across the fault, and P is the pore
water pressure), ambient temperature 7, A., and the chemical
effect CE of pore water pressure; however, it has been assumed
that 7 depends primarily on D, with the dependence of 7 on the
other parameters being of secondary significance. The specific
functional form of Eq. 3 must be determined by careful and well
prepared laboratory experiments so as to meet the physical
principles and constraints established.

Experimental Basis. To reveal local breakdown processes
near the propagating tip of a shear rupture along the fault in
rock of the brittle regime, and to get information on what
specific functional form well represents the constitutive law for
shear rupture, a number of high-resolution laboratory exper-
iments (1-3, 12) have been performed on propagating shear
rupture (mode II) along a preexisting fault. Fig. 24 shows an
example of a fault surface three-dimensional profile for a
granite sample used in the experiments, measured with a
diamond stylus profilometer, and Fig. 2B shows a log-log plot
of the power spectral density calculated for the surface profile
against wavelength. The fault surface prepared in the labora-
tory is fractal at wavelengths shorter than the corner wave-
length A, (cf. Fig. 2B), which is prescribed by the grit sizes used
for lapping in the laboratory (13, 14). The corner wavelength
is a good indicator of surface roughness (14).

The careful, high-resolution laboratory experiments (1-3)
have revealed intrinsic properties of the breakdown zone
behind the front of a propagating shear rupture (mode II) and
a specific constitutive relation for the shear rupture. The
observed relation between the local shear stress and slip
displacement (see figure 2A of ref. 3) is particularly important,
since it represents a self-consistent constitutive relation for
shear rupture. The relation demonstrates that the shear
strength degrades transitionally, from its peak value (or the
breakdown strength) to a residual friction stress level with
ongoing slip (slip-weakening). It has been established that the
slip-weakening relation during the dynamic breakdown process
does not depend on the slip velocity (2, 3, 8).

The high-resolution experiments (1, 3) further revealed that
the shear strength in the breakdown zone initially increases
with ongoing slip (slip-strengthening) before the peak shear
strength is attained (see figure 4 of ref. 3) (1, 3). That the slip
displacement D, at which the peak shear strength 7, is attained
becomes larger on rougher fault surfaces has been confirmed
by more recent laboratory experiments (unpublished data).
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FiG. 2. (A) A three-dimensional fault surface profile measured
with a stylus profilometer. (B) A log-log plot of the power spectral
density calculated for the fault surface against wavelength. A indicates
the corner wavelength.

The property that the slip-strengthening precedes the slip-
weakening plays an essential role in giving rise to bounded slip
acceleration near an unstably and dynamically propagating tip
of the rupture zone (3, 15), and therefore this constitutive
property must be incorporated into a physical model from
which earthquake strong motion source parameters such as the
peak slip acceleration can be treated rigorously in quantitative
terms (3). Note that the shear stress has its peak value not at
the crack tip but near the inner crack tip in the brittle regime
(cf. Fig. 1B), because the peak shear stress is attained at a small
but nonzero value of slip displacement (3).

Why does the slip-strengthening occur prior to the slip-
weakening? The real area of asperity junctions between mating
surfaces in general increases with ongoing slip before the peak
frictional resistance or the steady-state friction is reached, and
this results in an increase in the fault strength with ongoing slip
(7, 16, 17). This phenomenon is referred to as the slip (or
displacement) hardening or strengthening (7). An increase in
the area of the junctions with ongoing slip is attained, for
instance, when the number of asperities penetrated into the
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opposing surface increases with ongoing slip. Biegel et al. (16)
found that the rate and extent of slip-strengthening depend on
the surface’s roughness and the applied normal load; that is,
the rate of slip-strengthening is higher for rougher surfaces,
and the greater rate of slip-hardening at higher normal loads.

Fig. 14 conceptually summarizes the observed constitutive
relation for shear rupture. In the figure, 7; denotes the initial
strength on the verge of slip, 7, the peak shear strength, 7, the
residual friction stress, D, the slip at which the peak shear
strength is attained, and D, the critical slip displacement, which
is defined as the slip displacement required for the shear
strength to degrade to 7. The constitutive property for shear
rupture is prescribed and characterized by these five param-
eters. In particular, the following three parameters, 7,, A7,, and
D., are most crucial, because they virtually determine the
constitutive property for shear rupture. Here, A, is the
breakdown stress drop, which is defined as the difference
between 7, and 7. These constitutive parameters depend on
fault zone properties, ambient conditions, and the applied
strain rate (or slip rate). For instance, 7, and AT, are affected
by ¢, T, D, mechanical properties of the fault zone, and
chemical effect of pore water, while D. depends on A, repre-
senting geometrical irregularities of the fault, mechanical
properties of the fault zone, ¢&'f, and T (18).

Fig. 3 shows a relation between A, and D/, for frictional slip
failure (stick-slip) that occurred on a preexisting fault in granite
samples (18), indicating that there is a positive correlation be-
tween A, and D./A., which in general may be represented as

AT D\M
T
Tho Ac

where A,y and M are constants. Fig. 3 suggests that the
exponent M can approximately be regarded as unity. We will
find later that relation 4 plays a significant role in scaling the
size of shear rupture. Kuwahara et al. (14) demonstrated that
the critical slip displacement D, increases proportionally with
A¢ at a constant normal stress o,,. Taking this into consider-
ation, Ohnaka (18) has concluded that D. is related to A. by

D.=m(o,)A, [5]
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F1G. 3. An observed relation between the breakdown stress drop
Am, and the critical slip displacement D. normalized to the corner
wavelength Ac.
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where m(0,) is a numerical parameter, which is an increasing
function of o,. This is consistent with the observed result
shown in Fig. 3, because AT, increases with increasing o,.

A Slip-Dependent Constitutive Equation. Ohnaka and Ya-
mashita (3), based on the high-resolution laboratory experiments,
proposed a specific, slip-dependent constitutive equation for
shear rupture to quantitatively describe the observed breakdown
process near the dynamically propagating front of shear rupture.
The observed entire phases from slip-strengthening to slip-
weakening can well be represented by the proposed equation. As
will be discussed later, if we consider that the parameters pre-
scribing the constitutive equation are a function of position r on
the fault, the shear traction 7 on the fault near the tip of the
breakdown zone is a function of not only D, but also r, and hence
the constitutive equation proposed by Ohnaka and Yamashita (3)
may be rewritten as follows (11):

7(d, r)

old,r)= (D)

=1-Sm[1—-(1+A(r)log(1 + B(r)

(d —1)))exp(=A(r)B(r)(d — 1))], [6]

where d = D/D,, and S = An,/7,. Eq. 6 has been chosen to
conform to the constitutive relation observed in the laboratory
(3). We find from Eq. 6 that the constitutive equation at a position
r on the fault is completely prescribed if the parameters 7, 7, A7,
D,, and D, are given, because the parameters A4 and B in Eq. 6 are
determined uniquely from the following two relations (11):

1 —[1+ Alog(1 — B)]exp(AB) = %,
b

-ty ol )

where x is a given parameter of small fraction (say, x =
0.01-0.2).

As mentioned above, the physically reasonable constitutive
equation for shear rupture should result in the nonsingularity of
not only the stresses but also the slip acceleration at or near the
unstably and dynamically propagating tip of the rupture zone,
because the unbounded acceleration is physically unreasonable.
In fact, the bounded acceleration is crucial when strong motion
source parameters, such as the peak slip acceleration, are dis-
cussed from a physical viewpoint. Ida (15) has shown theoretically
that the acceleration can be bounded at the propagation tip if the
shear traction is a suitable function of the slip displacement. Since
the functional form Eq. 6 has been determined on an experi-
mental basis so as to quantitatively describe the dynamic break-
down process for shear rupture instabilities, Eq. 6 not only gives
the bounded slip acceleration and stresses at or near a dynami-
cally propagating crack tip during shear rupture but also explains
relations between strong motion source parameters quantita-
tively. This will be discussed briefly below but is more fully
described in an earlier paper (3).

For simplicity, we here assume a two-dimensional shear
crack whose tip is moving at a constant speed V' in an
unbounded elastic medium, and 7, = 0 over the entire crack
plane. We further assume that the constitutive equation is a
function of slip displacement D alone. Under these assump-
tions, the slip velocity and acceleration are given as (3)

[71

and

O L A\ Y 0
ot PO TVD =500y, 91
a2 PE =V = s e\ w ) ¢ 0ol
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where the rupture has been assumed to propagate in the
positive x direction. In the above equations, C(}V") is a known
function of V, p is the rigidity, and ¢’ and ¢" are the
dimensionless slip velocity and slip acceleration, respectively.
I' is a dimensionless quantity defined by (3)

r- | .y [11]
0 \/)? .

I' is related to the shear fracture energy G. by (3)

1
G.= 5 I'Am, Do, [12]

which shows that G is prescribed by A, and D, alone, since I" can
virtually be regarded as constant for the present model (3).

The dimensionless slip velocity ¢’ and slip acceleration ¢”
have been calculated numerically, and it has been found that
the calculated results agree well with experimental results in
the laboratory (3). One specific example derived theoretically
from the present model is

Dmax = (36 - 4~4)Dmaxf§11ux7 [13]

where Dy is the maximum slip acceleration, D the maximum
slip velocity, and f 5.« the cutoff frequency of the power spectral
density of the slip acceleration versus time record observed at a
position near the fault. The cutoff frequency f3,,y is equal to the
reciprocal of the breakdown time T, defined as the time required
for the crack tip to break down. The theoretical relation 13 agrees
quantitatively with the experimental results (3).

It is thus concluded that the slip-dependent constitutive Eq. 6
not only does not give rise to unrealistic singularities of slip
acceleration and stresses at or near the rupture front but also can
quantitatively explain experimental data on an unstably, dynam-
ically propagating shear rupture. This provides a physical con-
straint to be imposed on the constitutive law for shear rupture.

Breakdown Zone and a Scaling Parameter

When we assume that the shear traction 7 on the fault in the
breakdown zone is a function of the slip displacement D, and
that its specific relation is given as shown in Fig. 14, spatial
distributions of the shear stress and slip displacement near the
tip of the breakdown zone can be calculated theoretically, as
illustrated in Fig. 1B (3). This breakdown zone model (Fig. 1)
is scale independent, so that it is applicable to shear rupture of
any scale. However, some of the model parameters are scale
dependent; this will be discussed below.

In tensile fracture, the relative displacement to open a crack is
perpendicular to the macroscopic fracture plane, and hence the
size of the cohesive zone is not affected by geometric irregularities
of the fracturing surfaces. By contrast, in shear rupture, the
relative displacement is on the rupturing plane, and hence the
rupturing surfaces are in mutual contact and interactive through-
out the breakdown process. This shows that the size of the
breakdown zone is affected by geometrical irregularities of rup-
turing surfaces and that the critical slip displacement is necessarily
size-scale dependent, as demonstrated by the laboratory exper-
iments. For instance, the large amount of slip displacement is
required for an asperity of large size to break down. Accordingly,
D, is a fundamental parameter for scaling the shear rupture size,
and at the same time it is a crucial parameter for prescribing the
slip-dependent constitutive law. It is essentially important that the
constitutive law for shear rupture includes a scaling parameter D,
explicitly. In fact, the vast difference in size and time scales
between the laboratory and field rupture events is successfully
scaled in terms of D., as will be discussed below, and the
breakdown zone model (Fig. 1) based on the slip-dependent
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constitutive law in the framework of fracture mechanics enables
one to give a common interpretation to both small scale rupture
in the laboratory and large scale rupture as earthquake source in
the Earth (1, 3, 12, 19).

The breakdown zone size X is directly related to D, by (3)

DC A’Tb
Z: k TL s [14]
where
r
k= 2CONE [15]

for the present slip-weakening model. Here, £ is a numerical
parameter, and k has a value ranging from 1.4 to 2.7, assuming
that 7,/Am, = 0.5-0.8, and that 1V/V's = 0.1-0.5 (Vs, shear wave
velocity). This indicates that D./X. has the same order of
magnitude of Ar,/u. Since the stress parameters 7, 7, and,
consequently, Am, (= 7, — 7) in the vicinity of the tip of
propagating rupture are independent of the size scale (1, 12),
X and G, are necessarily size-scale dependent (1) (for G see
Eq. 12), because D, is size-scale dependent. As will be dis-
cussed later, if the breakdown of larger A results in the fault
rupture of larger size, both D and X, necessarily increase with
an increase in the geometric scale. It is obvious from Eq. 14,
however, that the ratio of D, to X, is independent of the size
scale, because Ay, is size-scale independent.

Laboratory data on stick-slip show that An,/p has a value
ranging from 107> to 1073 according to different normal stresses;
however, A7,/ does not exceed the order of magnitude of 1073
even if the applied normal stress is high enough (1). This is
because frictional strength on the precut fault can never exceed
the shear strength of intact rock even at sufficiently high normal
stresses, and because Am,/u for intact rock takes a constant value
of the order of 1073 despite the variation of normal stress over
wide ranges (1). It thus follows from Eq. 14 that D./X. is of the
order of 1073 or less. This agrees with values of D./X, estimated
by Papageorgiou and Aki (20) for earthquakes of moderate-to-
large sizes with different fault lengths ranging from 20 to 300 km.

The earthquake source strong motion can be represented by
such parameters as Dmax, Dmax, and f 5.x. From Egs. 9 and 10,
we have

max C(V) w
D < V A’Tb>21 17
ms * \ ) ) Do [17]

The cutoff frequency f3,.« at the source is similarly expressed
for the present model as (3)

fmax C( V) M Dc M [ ]
These relations show that D ax and f 5., are proportional to the
reciprocal of D, while D,y is independent of D.. Since D, is
size-scale dependent (but V' and Am, are size-scale inde-
pendent), both Dyax and f 1.« are size-scale dependent, while
Dy is size-scale independent (1, 12). We can thus conclude
that D, which is one of the constitutive law parameters, plays
a fundamental role in scaling the physical quantities dependent
on the size scale.

Nucleation Process of Unstable, Dynamic Rupture

The high-resolution laboratory experiments on rock in the
brittle regime (2, 12) have shown that an intrinsic part of
dynamic rupture is the nucleation process, which consists of
two phases; (i) an initial quasistatic phase, and (ii) the subse-
quent accelerating phase. Fig. 4 shows a plot of the rupture
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Fi1G. 4. A log-log plot of the rupture growth rate J” normalized to
the shear wave velocity Vs against the growth length L normalized to
Ac. Numerals attached to the curves indicate the applied strain rate.
Data are from ref. 20 in addition to our recent unpublished data.

velocity V' normalized to the shear wave velocity V against the
rupture growth length L normalized to the corner wavelength
Ac. This shows how shear rupture grows from stable, quasistatic
phase, to subsequent accelerating phase, and eventually to
unstable, fast-speed dynamic phase. The rupture speed de-
pends on the applied slip rate (or strain rate) in the stable,
quasistatic phase, whereas it no longer depends on the applied
slip rate in the accelerating phase. Fig. 4 indicates that to reach
the rupture velocity of, say, IV = 0.1V, the rupture needs to
grow up to the critical length of L = 4 X 103 A..

Fig. 5 shows an example of data on rupture nucleation of
quasistatic phase that occurred along a preexisting fault of A,
= 200 um (very rough fault surface), of which surface three-
dimensional profile has been shown in Fig. 24. In Fig. 54, the
rupture initiation time ¢ normalized to A./V5 is plotted against
position X, normalized to A, on the fault, where the origin of
t has been set arbitrarily. In this experiment, a series of strain
gage sensors were mounted at every 2.5-cm interval along the
fault at positions 5 mm from the fault surface to monitor local
shear strains, and the corresponding shear stresses were ob-
tained from the shear strains multiplied by the rigidity (2 X 10*
MPa) of the granite sample used. A constant strain rate of 2
X 107 was applied during this particular experiment. We
notice from the figure that the rupture began to nucleate at
position Ch.4 for this event, and that it proceeded bidirection-
ally at approximate speeds of 1-4 cm/s.

One can see from Fig. 54 how progressively the nucleation has
developed with time. In Fig. 5B, local fault strength T, is plotted
against X/\., showing how nonuniformly the fault strength is
distributed on the fault. It is found from Fig. 5 that the rupture
growth is prohibited by local barriers of the strength; that is, high
strength barriers inhibit rupture from spreading at a high speed.
It should be noted that the size of the breakdown zone (hatched
portion in Fig. 54) increases roughly linearly with time during the
stable, quasistatic phase of nucleation.

After the zone size of the stable, quasistatic nucleation has
exceeded a certain length, the rupture begins to extend at an
accelerating speed (Fig. 4), and at the same time the break-
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F16.5. (A) Space-time view of the nucleation for the fault of A =
200 um. Time ¢ and position X are normalized to Ac/Vs and A,
respectively. (B) Plot of the local shear strength 7, against position
X/Ac on the same fault.

down zone develops at the same rate. Fig. 6 shows how
dynamically at accelerating speeds the breakdown zone
(hatched portion) develops with the rupture growth during the
later phase of the nucleation process. By contrast, the size of
the breakdown zone is almost constant in the zone of dynamic,
fast-speed rupture propagation (Fig. 6). Fig. 6 was obtained
from data on slip failure (stick-slip) on the precut fault of A,
= 10 um (smooth fault surface) (2). Note that A, of the fault
surfaces for the data shown in Fig. 5 is 20 times larger than A.
for that shown in Fig. 6, and that both the breakdown zone size

High-speed rupture propagation
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F1G6.6. Space-time view of the transition process from the nucleation
to dynamic fast-speed rupture propagation for the fault of Ac = 10 um.
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X. and the nucleation zone size L are much larger for the fault
with A = 200 wm than with A, = 10 wm. Figs. 4, 5, and 6 show
that both X and L can successfully be scaled in terms of Ac.
This will be discussed later from a theoretical viewpoint.
Here I discuss the conditions under which the shear rupture
nucleates and under which the transition from stable, quasistatic
phase to unstable, fast-speed phase occurs. This has been studied
experimentally in the framework of fracture mechanics (2, 12).
Fig. 7 shows how the constitutive law parameters Ay, D, and (7,
— 7)/AT, vary along the fault in the nucleation zone. For
comparison, the variations of these parameters in the zone of fast
speed rupture propagation are also shown in Fig. 7. Each symbol
connected by thin lines in Fig. 7 represents data for one rupture
event. The fluctuation of individual data points in Fig. 7 may
partly be due to experimental errors, but it mostly reflects
inhomogeneities on the fault. We find from Fig. 7 that spatial
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rupture growth length L /A during the transition process from nucle-
ation to dynamic rupture propagation for the fault of Ac = 10 pum.
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distributions of A, D, and (7, — 7)/Am, on the fault in the
nucleation zone distinctly differ from those in the zone of dynamic,
fast-speed rupture propagation. In the nucleation zone, A, D,
and (1, — 7)/Am, have minimum values at the initiation point of
nucleation, and they increase with rupture growth without excep-
tion. By contrast, An,, D, and (1, — 7;)/AT, do not systematically
vary in the zone of high-speed dynamic rupture propagation. This
shows that nonuniform distributions of the constitutive law pa-
rameters on the fault, which may be regarded as a function of
position on the fault, are crucial for creating the nucleation.

The energy required for the rupture front to further grow
(shear fracture energy) is given by Eq. 12, and hence an increase
in the magnitudes of Ar, and D, brings about increasing resistance
to rupture growth. Accordingly, the above results may be para-
phrased as follows: the resistance to rupture growth increases
with rupture extension in the nucleation zone.

The above experimental findings have been confirmed and
clarified by a number of theoretical studies (17, 21). In particular,
a recent theoretical study and numerical simulation by B. Shiba-
zaki and M. Matsu’ura (personal communication), based on a
slip-dependent constitutive law, and taking the experimental
results shown in Fig. 74 and B into consideration, have success-
fully explained the transition process from the nucleation to
high-speed rupture propagation revealed in the high-resolution
laboratory experiments in quantitative terms. This leads to the
conclusion that nonuniform distributions of the constitutive law
parameters on the fault are necessary and sufficient conditions
for creating the nucleation in the brittle regime.

It has been shown that the shear rupture nucleation does occur
in the brittle regime when the constitutive law parameters are
distributed nonuniformly on the fault and that the size of the
nucleation zone increases proportionally with A.. This indicates
that A¢ is a crucial parameter (pertinent to geometrical irregu-
larities of the fault) for scaling the nucleation zone size, which is
discussed below from a theoretical viewpoint.

Consider a shear rupture nucleation model shown in Fig. §,
in which it is assumed that the critical size L. of the nucleation
zone is attained at a critical time ¢., when the rupture begins
to propagate bidirectionally at a constant velocity V. For this
particular model, the following relation holds

L.=2X,, [19]
at the critical time ¢.. From Eq. 14,

Xe=1*p 20

c k ATb [ [ ]
If A7, is assumed to be constant, Egs. 19 and 20 show that both
X.and L. are directly proportional to D.. The assumption that
Ay, is constant may be justified for rough discussion purposes.

A Rupture Nucleation Model

Unstable fast-speed rupture
1]

Distance along Fault

F1G. 8. Model of rupture nucleation. Hatched portion indicates
breakdown zone where slip-weakening proceeds. X. is the breakdown
zone size, and L. is the critical size of the nucleation zone. It has been
assumed in this model that the rupture begins to propagate bidirectionally
at a constant velocity at time #.
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Laboratory data (Fig. 3) show, however, that both Ar, and D,
are an increasing function of o, so that the assumption of A,
being constant is not justified for more rigorous discussion.
From Egs. 4, 5, and 20,

_be -
Xc - k A'Tb() {m(o'n)} AC; [21]

which shows that X is directly proportional to A, and that X,
is independent of o, if M = 1. If M # 1, X, depends not only
on A., but also on o, However, the dependence of
{m(o,)}' ™ on o, is modest, so that X, is practically pre-
scribed by A, alone. One can thus conclude from Eqgs. 19 and
21 that X. and L. are virtually prescribed and scaled by A.
alone. If it is tentatively assumed that the critical size of the
nucleation zone is attained at a value in the '/ Vs range 0.1-0.5,
and that /A, = 0.5-0.8, then L. = (4.9-9.7) X 103 A from
Eqgs. 19 and 21 by considering that u = 2 X 10* MPa for the
granite sample used, and assuming that M = 1 and Ar,p = 3
MPa (see Fig. 3). This theoretical estimate agrees with the
experimental result (Fig. 4).

During the nucleation, the energy is exclusively consumed in
and around the zone of nucleation, since the nucleation is the
process (or zone) in which slip failure deformation is concen-
trated and accelerated. Accordingly, dynamic instabilities of small
to microscopic scales (microseismicity or acoustic emission) are
induced and activated during the nucleation process, when the
rupture growth resistance on the fault varies on small to micro-
scopic scales. This has been demonstrated by recent laboratory
experiments (unpublished data). It has also been found that
seismic b values decrease as the nucleation proceeds (unpublished
data). These observations suggest that microcrack interactions in
the fault zone play a crucial role in the nucleation process.

Earthquake Rupture Nucleation and Immediate Precursors

We have seen that geometrical and/or mechanical inhomogene-
ities play a crucial role in the shear rupture nucleation process.
Such inhomogeneities prevail in the brittle seismogenic layer in
the Earth’s crust. The seismogenic layer contains a large number
of preexisting faults of microscopic to macroscopic scales, and
therefore the seismogenic layer is inherently inhomogeneous. In
addition, a preexisting fault itself in the Earth’s crust exhibits
geometrical irregularities and mechanical inhomogeneities of
various scales on the fault surfaces and in the fault zones. This
strongly suggests that earthquake dynamic rupture is necessarily
preceded by a quasistatic to quasidynamic nucleation process.
However, whether or not a sizable zone of the nucleation appears
prior to earthquake dynamic instability depends on how nonuni-
formly the constitutive law parameters prevail on the fault in the
lithosphere (18).

The shear rupture nucleation model presented in this paper
(see also ref. 18) can explain why and how short-term (or
immediate) precursors are intrinsically related to the earthquake
nucleation that proceeds quasistatically to quasidynamically prior
to the mainshock dynamic rupture and how essential it is in
carrying immediate foreshocks that the rupture growth resistance
is distributed nonuniformly on a local to small scale in the fault
zone in the brittle regime. The model shows that immediate
foreshock activity is a part of the mainshock earthquake nucle-
ation (18, 22). This provides a physical explanation for observa-
tions commonly made for decades that immediate foreshocks are
concentrated in the vicinity of the epicenter of the pending
mainshock. Whether or not immediate foreshocks occur during
the mainshock nucleation depends on how the rupture growth
resistance varies on a local to small scale in the nucleation zone
(18, 22).

During the nucleation, local shear stresses decrease gradu-
ally in the breakdown zone, and at the same time the corre-
sponding premonitory slip also proceeds in the zone, since the
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shear strength degrades with ongoing slip in the nucleation
zone. Premonitory stress (or strain) changes are also observed
outside (but adjacent to) the nucleation zone; that is, local
shear stresses on the remaining unslipped parts adjacent to the
nucleation zone increase with time because the unslipped
segments must bear extra stress loads that have been sustained
by the slipped parts. These gradual, accelerating changes in
both local stress and slip are inevitable precursors that occur
locally in or adjacent to the zone of the rupture nucleation.
However, no such precursory slip and stress degradation
necessarily occurs in a region distant from the nucleation zone,
and the precursory deformation and stress changes can locally
be confined in (or adjacent to) the zone of the nucleation. This
suggests that the key to the short-term (or immediate) earth-
quake prediction is to identify where the nucleation occurs on
the fault that has the potential to cause a major earthquake.

If the critical size of the nucleation zone for a real major
earthquake is small enough, it may be meaningless to regard the
nucleation process as an effective tool for the immediate predic-
tion. In this sense, it is important to know how large is the critical
size of the nucleation zone for a real major earthquake. The
critical size of the nucleation zone has recently been estimated for
a number of major earthquakes (B. Shibazaki and M. Matsu’ura,
personal communication; see also refs. 22 and 23), showing that
L. for major earthquakes with M = 7.0-7.7 is 5-10 km.

For a given L of 5-10 km, A = 0.5-2 m from Egs. 19 and 21.
This estimate suggests that for earthquakes of M = 7.0-7.7, the
breakdown process behind the tip of propagating rupture is
virtually governed by a characteristic length of the order of 1 m,
which is 10*-10° times greater than A. for shear rupture in the
laboratory.

I am deeply grateful to Professor L. Knopoff and the other
organizers for inviting me to present this paper and for their courtesy
during the Colloquium.
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